Pectin methylesterases: sequence-structural features and phylogenetic relationships.
نویسندگان
چکیده
Pectin methylesterases (PMEs) are enzymes produced by bacteria, fungi and higher plants. They belong to the carbohydrate esterase family CE-8. This study deals with comparison of 127 amino acid sequences of this family containing the five characteristic sequence segments: 44_GxYxE, 113_QAVAL, 135_QDTL, 157_DFIFG, 223_LGRPW (Daucus carota numbering). Six strictly conserved residues (Gly44, Gly154, Asp157, Gly161, Arg225 and Trp227) and six conservative ones (Ile39, Ser86, Ser137, Ile152, Ile159 and Leu223) were identified. A set of 70 representative PMEs was created. The sequences were aligned and the evolutionary tree based on the alignment was calculated. The tree reflected the taxonomy: the fungal and bacterial PMEs formed their own clusters and the plant enzymes were grouped into eight separate clades. The plant PME from Vitis riparia was placed in a common clade with fungi. Three plant clades (Plant 1, 2 and 3) were relatively homogenous reflecting high degree of mutual sequence identity. The clade Plant 4 contained PMEs from flower parts (mostly form pollen) and was heterogenous, like the clades Plant 1a and 2a, which moreover exhibit an intermediate character. The clades Plant X1 and X2 were situated in the tree close to microbial clades and represented atypical plant PMEs. Taking into account the remaining plant PMEs, an expanded plant alignment and tree (with most Arabidopsis thaliana and Oryza sativa enzymes), were prepared. An exclusive Arabidopsis alignment and tree indicated the existence of a new plant clade X3. In the pre pro region of most plant enzymes a longer conserved segment containing basic dipeptide, R(K)/R(K), that precedes the N-terminal end of PME was revealed. This was not observed in the clade Plant X1 and majority of the clade Plant X2. This study brings further the description of occurrence of potential glycosylation sites in pre pro sequences and in mature enzymes as well as important amino acid residues, such as aspartates, cysteines, histidines and other aromatic residues (Tyr, Phe and Trp), with discussion of their possible function in the activity of PMEs.
منابع مشابه
The Pectin Methylesterase Gene Complement of Phytophthora sojae: Structural and Functional Analyses, and the Evolutionary Relationships with Its Oomycete Homologs
Phytophthora sojae is an oomycete pathogen that causes the disease known as root and stem rot in soybean plants, frequently leading to massive economic damage. Additionally, P. sojae is increasingly being utilized as a model for phytopathogenic oomycete research. Despite the economic and scientific importance of P. sojae, the mechanism by which it penetrates the host roots is not yet fully unde...
متن کاملNew insights into pectin methylesterase structure and function.
In bacteria, fungi and plants, pectin methylesterases are ubiquitous enzymes that modify the degree of methylesterification of pectins, which are major components of plant cell walls. Such changes in pectin structure are associated with changes in cellular adhesion, plasticity, pH and ionic contents of the cell wall and influence plant development and stress responses. In plants, pectin methyle...
متن کاملPectin methylesterases: cell wall enzymes with important roles in plant physiology.
Pectin methylesterases catalyse the demethylesterification of cell wall polygalacturonans. In dicot plants, these ubiquitous cell wall enzymes are involved in important developmental processes including cellular adhesion and stem elongation. Here, I highlight recent studies that challenge the accepted views of the mechanism and function of pectin methylesterases, including the co-secretion of p...
متن کاملPhylogenetic relationships in Ranunculus species (Ranunculaceae) based on nrDNA ITS and cpDNA trnL-F sequences
The genus Ranunculus L., with a worldwide distribution, is the largest member of the Ranunculaceae. Here, nuclear ribosomal internal transcribed spacer (ITS) sequence data and chloroplast trnLF sequence data were used to analyze phylogenetic relationships among members of the annual and perennial (Group Praemorsa, Group Rhizomatosa, Group Grumosa and Group non-Grumosa) species of Ranunculus...
متن کاملPectin methylesterases induce an abrupt increase of acidic pectin during strawberry fruit ripening.
The decrease of strawberry (Fragariaxananassa Duch.) fruit firmness observed during ripening is partly attributed to pectolytic enzymes: polygalacturonases, pectate lyases and pectin methylesterases (PMEs). In this study, PME activity and pectin content and esterification degree were measured in cell walls from ripening fruits. Small green, large green, white, turning, red and over-ripe fruits ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carbohydrate research
دوره 339 13 شماره
صفحات -
تاریخ انتشار 2004